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Hyperbolic Systems of Conservation Laws, the Weyl Equation,
and Multidimensional Upwinding
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All linear hyperbolic systems of twa conservation laws can be trans-
formed to essentially one prototype system. This system can be
identified with the Weyl equation of relativistic quantum mechanics.
We derive a wave model for this equation and compare the resulting
fluctuation splitting scheme with standard dimensional splitting
schemes. & 1994 Academic Press, Inc.

I. INFRODUCTION

Upwind schemes have been highly successful for
compuling solutions to hyperbolic systems of conservation
laws in one space dimension. They decompose the solution
locally into a sum of finitely many simple waves, each of
which can only travel to the left or right. Unfortunately,
there is no straightforward generalization of this procedure
to multidimensional systems, since the “wind” can now
come from infinitely many directions.

In the important article [ 13], Roe developed the idea of
a4 wave model for the Euler equations of gas dynamics. This
ansatz chooses only {initely many directions from multi-
dimensional daia and approximates the solution locally by
a sum of simple waves traveling into thosc directions.
Philosophically, this is very appealing, since these directions
depend only on the local gradient of the solution and not
directly on the grid directions.

Fluctuation splitting schemes transport a scalar wave
over a multidimensional grid. Using a wave model, they can
be applied to multidimensional systems {see [3, 4, 15] and
the references therein).

In this article we consider a prototype system of two
conservilion Iaws in two space dimensions [Y, 5] which we
can identity with the Weyl equation of relativistic quantum
mechanics. This cquation governs the propagation of a
particle with spin 1 and mass zero. The main result of this
article is the derivation of a wave model for the Weyl equa-
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tion. We present first numerical experiments comparing the
fluctuation splitting scheme based on our wavemodel to
standard dimensional splitting schemes.

2. WAYE MODELS

Let us briefly summarize some ideas outlined in [13, 16].
Let x={x,,..Y)JeR%L A=(A,, ... 4,). where the 4, arc
constant # xn malrices such that for all unit vectors £ =
(&, ENeS cRYthematrix £ - 4 =37_ | £;4, has real
eigenvalues A,,(£), m=1, .., n, and a complete set of eigen-
vectors {p,(&)m=1,..,n}. Consider the initial value
problem

=1 ’6xj
wRIxR, - R,
uix, 0) =uy(x).

d il d
au(x, N+ Y A;7—ulx,1)=0,
i

(2.1}
(2.2)
The following observation is due to Roe, Struijs, and
Deconinck [16].

LEMMA |. Let Vi be a constant n x d matrix and suppose
that

tg{x) =0 {0y + x - Vu. (2.3)
Let N1 be given, and for k=1, .., N let m(k)e {1, .., n},
a¥eR, and e85 Let 2*:=2,,,(&) and p*:=
plu[k](ék)' I.f

N
Vu= Y a'ép*
K=t

(2.4)

then the solution of the initial-value-problem (2.1)-(2.3) is
given by

u(x, ) =ul0)+ 3 af(x-&* flkt)pk. (2.5)

k=1
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For the proof just differentiate (2.5) and use the relation
(&% - A) p* = A*p*. The significance of the lemma is that the
solution of (2.1)-(2.3) is decomposed into finitely many
planar waves. Upwind schemes in one space dimension are
built upon such a decomposition (compare [ 13]). Formula
(2.4) is a system of »n - d equations for the unknowns m(k),
o*, &* A wave model now consists of a choice of some of
these unknowns such that for any given Jacobi matrix Vu,
the resulting system (2.4) can be solved uniquely for the
other unknowns.

For any system, there is always the “trivial” wave model,
which consists of prescribing d independent directions &*
and using the full set of eigenvectors for each direction. The
unknowns are then «f, k=1, .., N=#n-d. Here no direc-
tional information is extracted from Vu. Numerically, this
corresponds to computing only in the grid directions. The
best situation is when all the matrices 4, commute. In this
case they possess a common set of eigenvectors, and we can
diagonalize the system. We can now extract one direction &*
and one amplitude o for each of the n components (N = n).

The more interesting cases lie in-between. For the Euler
equations of gas dynamics, first wave models have been
derived by Roe [ 13], followed by [ 11]. We now proceed to
derive wave models for arbitrary systems of two linear
conservation laws in two space dimensions.

3. SYSTEMS OF TWO CONSERVATION LAWS AND
THE WEYL EQUATION

As a class of model problems, let us consider the case
n=2 and dz1. According to a theorem of Gilquin,
Laurens, and Rosier [5], all those systems can be trans-
formed either to

8
5, Ul 1) =0

or

d 1 0N &
au(x,t)+(0 _l)éx—lu(x,t)=0

or

N ¢
0) —u{x, t)=0.

2u'(x t)+(1 0) 9 (x, £} 0
P o )5 e o) o,

{3.1)

The first two cases correspond to systems which can be
diagonalized. We are here interested in the third case. First
we will show how (3.1) arises in relativistic quantum
tnechanics, Afterwardé, we will derive a wave model
for (3.1).
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The Pauli-matrices (see [87) are

0 1 0 —i 10
17\ o) T\ o) T\ 1)

Let po=(#/i)}(6/0t), p;=(h/i{d/ex,), j=1,2,3, be the
momentum operators. Now Dirac’s equation for the four-

component wave function of a particle with spin  and

PO p 0

For a particle with mass zero®, Dirac’s equation reduces to
the Weyl equation

(po+p-aln=0

(3.2)
(po—p-0)l=0.
If sotutions to (3.2} are independent of x,, the Weyl equa-
tion is equivalent to (3.1), From now on we will denote the
independent variables by (x, y)eR? and the dependent
variables by (u, v)e R%
In order to derive a wave model we rewrite Weyl's equa-
tion in complex form: Let U=u+iv, z=x+iy, U=u—iv,
and (9/8z) = 3(8/0x — i(8/@y)). Then (3.1) is equivalent to

a - 3, _
Y Uz, z, I)+25; Uiz, 2,1 =0,

Let U, =1ue” and U,;=1ive™ be complex constants, and
suppose that the initial data are linear and given by

Uz, z,0)=zU, + 20..
We now make the ansatz

&8 = (cos 0%, sin 0%),

B"=Bo+2?n(k—2),

(3.3)

The analogue of {2.3) is

3
Uz, 7,0)= 3 ake™Prk,
k=1

where

{* = (ze™ 1 20,

' ]t is still controversial whether the neutrino has zeto mass.
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Therefore,

(3.4)

(3.5)

From (3.5) and (3.3),
3
pe® =30 o S k()
k=1

S0
By, =2¢/3
and

af=v4+al+a’ (3.6)

Now (3.4) and (3.6) can be solved easily: for ¢ :=a + 8,/2,
we obtain

Cx.k — ( ‘31 )k

2
v+§,ucos(llf+(k—2)g), k=1,2,3.

4. A NUMERICAL EXPERIMENT

As a first numerical experiment, we compute a space-
periodic train of discontinuities traveling obliquely over a
two-dimensional cartesian grid. We compare the following
three schemes:

(a) The fluctuation splitting NN-scheme [15,16],
which we can apply to the Weyl equation using our wave
model. In order to obtain a triangular grid, we divide each
cell of the cartesian grid along its subdiagonal.

{b) The one-dimensional upwind scheme, which we
apply to the two-dimensional problem via zlternate dimen-
sional splitting. The one-dimensicnal scheme is monotone
and hence convergent. For scalar multidimensional
problems, the splitting scheme converges due to a resnlt of
Crandall and Majda [2].

(¢} The one-dimensional piecewise linear method with
Roe’s superbee flux-limiter [12] and Strang’s dimensional
splitting [18]. The one-dimensional scheme is formally
second-order accurate in both space and time and total-
variation-diminishing, hence convergent for one-dimen-
sional scalar conservation laws [ 71,

The initial data are given as follows: Let ¢ [0, /2] be a
fixed angle and suppose that the solution u(x, y, t), v(x, y, t)
of (3.1} depends only on & :=x cos ¢ + ysin @ and . Then

u(x, v, ty=w(&, 1) cos{@/2) + z(&, 1) sin{g/2)
v(x, y, t}y =w(¢, 1) sin(¢p/2) — z({/1) cos(p/2),
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FIG. 4.1, Fluctuation splitting scheme, diagonal flow, ¥y =087, cross

section of the computed solution w,, z; versus the exact solutton at times
t=dtand 1=T.

where w and z satisfy

d
—z

B (£, )=0.

d
. Z('f! t)

¢
& 0+zwen=0

a w 65

We suppose that w and z are space-periodic with period
p=cos p and assign initial data

_fL pMA={<3p/d
”""é)"{o, 3p/A<E < Spjd

Zu(é) = 0,

a single wave traveling to the right with speed a=1.

Let h=Ax =4y be the mesh size of the cartesian grid,
and let 4 = h/(cos @ + sin @). It we define the CFL-like
number y :=a At/A&, then the fluctuation splitting scheme
would be stable for the scalar equation

7
3 u(x, ¥, 1) + a(cos @, sin @) - Vu(x, y, £} =0,

provided that y < 1. Let now T= p/a be the time period and
let M = T/At be the number of time-steps per period. Then
y=aT/M JE&.

4.1. Diagonal Flow, ¢ =n/4
In our first calculation, we used ¢ =7/4 and M =46,
corresponding to y = 0.87. In Figs. 4.1-4.3, we display cross

wix,y=0,t=0,015}) z{x,y=0,£=0.015)

- 1
| 0.5

0.5 1

9.5 1
2{x, y=0,t=0.71)

wix,y=0,t=0.71])

0.3 1

FIG. 4.2. First-order upwind scheme. Parameters as in Fig. 4.1. Note
the oscillations in z, after one timestep.
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FIG. 4.3. Piecewise linear method with superbee limiter. Parameters
as in Fig. 4.1. The oscillations persist.

jun

0.3 1
z(x,y=0,t=0.71}

sections of the solution for the three schemes at times ¢ = At
and t = T, where T = p/a is the time period. The fluctuation
splitting scheme shows a result typical for a first-order
scheme (see Fig. 4.1). The dimensional splitting schemes,
however, introduce oscillations. Such oscillations were
already observed and analyzed in [ 14, 10]: when solving
the one-dimensional Riemann problem in the x- and
y-directions, these schemes do not recognize the single wave
traveling obliquely to the grid. Insteady, they solve the
Riemann problem by a superposition of rwo waves. Thus
they introduce an artificial intermediate state which causes
the oscillations seen in Figs. 4.2 and 4.3. For the first-order
upwind scheme, the oscillations are damped and disappear
quickly. For the high-resolution piecewise linear method,
however, they persist and grow exponentially in time: in
Fig. 4.4 we show ||(u,(1), v,(1))| ., in logarithmic scale. This
exponential growth happens even when reducing the
timestep by a factor of 10 (see Fig. 4.5).

42. Oblique Flow, ¢ = arc tan(3)

One might argue that the particular direction of flow
chosen in the previous test calculation gives the fluctuation
splitting scheme an unfair advantage over the dimensional
splitting schemes, since diagonal flow 1s aligned with the
triangular grid used by that scheme. We thus present the
analogous calculation for oblique flow, ¢ =arc tan(}),
M=>54 (ie., y=~0.89). In Fig. 4.6, we show the solution of
all three schemes at r=T and in Fig 4.7 the exponential
growth of the L, norm for the piecewise linear method. The
results are not as pronounced as for the diagonal flow, but
qualitatively similar.

In order to demonstrate the ability of the fluctuation
splitting scheme to recognize the relevant direction of wave
propagation, we display the fluctuation transport vectors in
Fig. 4.8 at time r=T. These vectors, which are attached to
the barycenter of each triangle, are defined by

|| £% = |a®|(cos 8%, sin 6%), k=1,2,3.
In most triangles, only one of these vectors is visible, and for
this vector, 6* is close to ¢. This shows that most of the
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FIG. 44. Piecewise ltnear method. Diagonal flow, y==0.87: (a)
log([{uy, v)ll £} versus ¢/T; 50 time-periods. (b} Cross section of the solu-
tion at =3507. The figures demonstrate the exponential growth of the
oscillations.
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FIG. 45. Same as Fig. 44(a), but with CFL number y ~ 0.087.
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FIG. 4.6. Fluctuation splitting, first-order upwind, and piecewise
linear schemes, oblique flow, y &~ 0.89, cross section of the computed solu-
tions wy, z, versus the exact solution at time t =T
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FIG. 4.7. Piecewise linear method, oblique flow, y~089,
log(flus, vy}l ) versus ¢/T. Exponential growth of the oscillations.
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FIG. 48. Fluctuation transport vectors. Oblique flow, y =089, r=T

gradient is projected onto the correct eigenvector. Finally,
we would like to remark that reversing the diagonals of the
grid shown in Fig 4.8 makes the fluctuation splitting
scheme somewhat less stable,

4.3. Further Test Problems

The Weyl equation is a particular example of the fol-
lowing class of nonlinear hyperbolic conservation laws,
which was proposed by Lax [97,

% Uz, 7, t) +§Z~F( Uz, z, 1)) =0,

where F(U) is holomorphic and we have used the notation
of Seetion 3. In particular, let F({) :=(2/(n+ 1)) U**!. For
n=0, we obtain the Weyl equation and for n=1 the
complex Burgers equation. This equation possesses interesting
solutions to the one-dimensional Riemann problem,
including nonstandard “crossing” shocks [17, 6, 1]. For all
nz 0, there exist radially symmetric solutions which are,
however, multiple-valued. Linearizing the systems over a
triangle and using the wave model locally, the fluctuation
splitting schemes may be applied to these nonlinear
problems.

5. CONCLUSION

We have presented a prototype linear 2 x2 system of
conservation laws in two space dimensions, identified it
with the Weyl equation and derived a nontrivial multi-
dimensional wave model. We computed discontinuities
traveling obliquely over a rectangular grid. A state-of-the-
art high-resolution dimensional splitting scheme produces
unacceptably large oscillations, which grow exponentially
in time. The fluctuation splitting scheme based on our wave
model recognizes the direction of flow well, but it is only
first-order accurate for time-dependent flow (such schemes

may achieve second-order resolution for steady state
calculations [4]). The development of genuinely multj-
dimensional second-order resolution methods for systems of
conservation laws remains a challerging task. The Weyl
equation, being the simplest generalization of the one-
dimensional scalar advection equation to multidimensional
systems, provides simple, yet interesting, test problems for
these future schemes.
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